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Melting of two-dimensional mono-crystals is described within the celebrated Kosterlitz-Thouless-
Halperin-Nelson-Young scenario (KTHNY-Theory) by the dissociation of topological defects [1–5].
It describes the shielding of elasticity due to thermally activated topological defects until shear
elasticity disappears. As a well defined continuous phase transition, freezing and melting should
be reversible and independent of history. However, this is not the case: cooling an isotropic 2D
fluid with a finite but nonzero rate does not end in mono-crystals. The symmetry can not be
broken globally but only locally in the thermodynamic limit due to the critical slowing down of
order parameter fluctuations. This results in finite sized domains with the same order parameter.
For linear cooling rates, the domain size is described by the Kibble-Zurek mechanism, originally
developed for the defect formation of the primordial Higgs-field shortly after the Big-Bang. In the
present manuscript, we investigate the limit of the deepest descent quench on a colloidal monolayer
and resolve the time dependence of structure formation for (local) symmetry breaking. Quenching
to various target temperatures below the melting point (deep in the crystalline phase and just close
to the transition), we find universal behaviour if the timescale is re-scaled properly.

I. INTRODUCTION

The glass transition temperature depends on the
cooling rate and shows memory effects, thus it does not
mediate between well defined thermodynamic states
in the classic sense [6–9]. This is different for phase
transitions where melting and freezing is assumed to be
reversible. However, this is partly true for discontinuous
(first order) phase transitions, where a nucleation barrier
has to be overcome. For careful cooling / heating and
very clean ensembles (free of nucleation seed leading
to heterogeneous nucleations) the systems can be
supercooled or overheated, indicating some hysteresis
in transition temperatures. The maximal width of the
hysteretic region ranges up to the spinodal, where the
slope of e.g. Van-der Waals curve becomes negative and
phase separation must set in [10].

For continuous (second-order) phase transitions,
nucleation barriers do not exist, ruling out any hys-
teresis of the transitions. Since the free energy density
between the high and low temperature phase disappears
at the transition temperature, phase separation does
not exist and there is a priory no reason to expect
freezing and melting not to be completely reversible.
However, critical fluctuations of the order parameter
dictate the behaviour of the ensemble and timescales
become important. A famous example is the Ising model
in 2D which is beside the 2D XY-model and the 2D
particle system one of the rare examples with an analytic
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solution of transitions temperatures Tc [1, 2, 4, 5, 11, 12].
Above Tc magnetic moments randomly point upwards
and downwards, the ensemble is homogeneous and
isotropic. Below Tc, the magnetic moments organize to
be parallel and a macroscopic magnetization builds up.
This magnetization can be taken as an order parameter
and the symmetry of the ensemble is broken. If the mag-
netization points upwards or downwards is a matter of
change - part of the story why this phenomenon is called
spontaneous symmetry breaking. Typically it is assumed
that by crossing Tc from the high temperature to the
low temperature phase the symmetry switches globally.
However, taking timescales into account this can not be
the truth in the thermodynamic limit: in infinitely large
ensembles, only regions which are connected by causality
can have the same order parameter after symmetry
breaking. Regions which are separated a distance larger
than the speed of light times the time after crossing Tc
(defining an event horizon) can not necessarily gain the
same order parameter. Thus, the symmetry can only be
broken locally and the order parameter can be uniform
only within the event horizon. Melting and freezing
are not reciprocal in the thermodynamic limit, even for
continuous phase transitions.

This idea was first discussed by Tom Kibble [13–15] for
the symmetry breaking of the first two component scalar
field (nowadays often named Inflaton) shortly after Big-
Bang. Topological defects like grain boundaries, strings,
and monopoles should be incorporated as leftovers of
the high symmetry field in the symmetry-broken stage.
Zel’dovich e.g. calculated optical properties of grain
boundaries within the Higgs-field for detecting their
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FIG. 1. Bond-order correlation function before the quench
(black) and after a quench from Γ = 16 to a final coupling
strength of ΓE = 74 for various waiting times. Dotted lines
are exponential fits to the curves, which appear as straight
lines in the lin-log-plot.

traces within the electromagnetic background radiation
in the universe [16]. Up to now, such defects have never
been observed which is one of the reasons (besides the
flatness of space-time of the universe and the overall very
isotropic cosmic microwave background) postulating
inflationary Big Bang models: during the exponentially
fast growth of the very early universe, all defects have
been pushed beyond the event horizon.

Wojciech Zurek [17–19] applied the same idea to
another two-component but complex field, namely the
macroscopic wave function of superfluid Helium. In this
three-dimensional (3D) system with a two-component
(2N) order parameter, the most natural topological
defects are strings, given by the vortices of the wave
function with a normal-fluid core. In condensed matter,
the signal velocity is given by the speed of sound (or
second sound in the case of superfluid Helium). However,
a more detailed picture of defect formation is as follows:
any continuous phase transition is dominated by critical
fluctuations. Approaching Tc from above, ordered
domains get larger and larger and order parameter
correlation functions diverge algebraically (free of any
typical length-scale). At Tc, the correlation length is
infinite, the structure is self-similar on all scales showing
a fractal pattern. Both, ordered and disordered regions
cover 50% of the volume. Since the energy difference
between both phases is zero at Tc (and very small in
the vicinity), the pattern is not static but fluctuates.
The larger the domains, the slower they appear and
disappear. Not only length scales diverge but also
time scales: the temporal order parameter correlation

FIG. 2. Snapshot of the mono-layer 120 s after a quench
from Γ = 16 to a final coupling strength of ΓE = 166. The
color code (from blue m = 0 over yellow to red m = 1) is given
by the magnitude m of the local bond order parameter. Blue
particles are locally disordered (low order = high symmetry
phase) and red particles have large sixfold symmetry (high
order = broken symmetry).

functions diverge algebraically, too. This behaviour in
the vicinity of Tc is named critical slowing down.

For any nonzero (most easily linear) cooling rate, one
can compare the critical slowing down with the time to
reach the transition. Far away from the transition, corre-
lation times are short and order-parameter fluctuations
can follow the cooling. The system is quasi-adiabatic. If
the correlation time gets larger than the time to reach
the transition, fluctuations can not follow further and
a fingerprint of the longest length scale is taken. This
well-defined fall-out-time defines the largest size of the
symmetry-breaking domains. Many systems have been
investigated to prove the Kibble-Zurek mechanism, e.g.
in liquid crystals [20], superfluid 3He [21], superconduct-
ing systems [22], convective, intrinsically out of equi-
librium systems [23], multiferroics [24], quantum sys-
tems [25], ion crystals [26, 27], and Bose-Einstein con-
densates [28] (the latter two systems contain the effect
of inhomogeneities due to e.g. temperature gradients).
A detailed review concerning the significance and lim-
itations of these experiments can be found in [15, 29].
Recent work includes quantum system also in two dimen-
sions [30–32] and universal behaviour as well as limita-
tions of the Kibble-Zurek scaling are discussed in [33, 34].
In classical two dimensions ensembles and for linear cool-
ing rates, the Kibble-Zurek scaling was proven to be valid
also for the Kostelitz-Thouless universality [35].

How does the scenario alter, if the system is quenched
on ultra-fast time scales? In the given manuscript we
investigate a two-dimensional (2D) colloidal mono-layer
which has a two-component order parameter (2N)
given by the director field of nearest neighbors. This
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FIG. 3. Orientational correlation length as function of time
in a log-log-plot for different quench depth. Shortly after the
quench, the growing behavior is exponential and switches to
algebraic later. The quench depth increases from top to bot-
tom. Note the decreasing cross-over time (red arrows as a
guide for the eye) for deeper quenches. The crossover from
exponential to algebraic takes place when the number of do-
mains has its maximum and clusters start to tough. This
value is at about 37% crystallinity which marks the time
range when fluctuations start to become suppressed.

property is shared by the Higgs-field and superfluid
Helium, besides the fact, that the latter is a complex
quantity. Since it is two-dimensional and consists of
micrometer-sized particles, defects and domains can be
monitored in situ by video microscopy, unlike in 3D
ensembles, where typically only the surface of the 3D
bulk can be monitored.

The experiment is in detail described in [36] and it was
successful in validating 2D melting theory [37–39] and
Mermin-Wagner-Hohenberg fluctuations [40]. Here, only
a brief description is given: a droplet of a suspension com-
posed of super-paramagnetic polystyrene spheres [41] are
dispersed in a water droplet, which is suspended by sur-
face tension in a top sealed cylindrical hole (∅ = 6 mm)

of a glass plate. The particles are 4.5 µm in diameter
and have a mass density of 1.5 g/cm3 leading to sed-
imentation. The large density is due to the fact that
the polystyrene beads are doped with iron oxide nano-
particles which further causes the super-paramagnetic
behavior. After sedimentation, particles are arranged in
a mono-layer at the water-air interface of the droplet.
The interface is kept planar (less than 250 nm height dif-
ference from the middle to the border) by active regu-
lation based on several control loops using digital image
analysis. It is kept horizontal with changes in inclinations
less than 1mRad by an inclinations sensor driving a tri-
pod on which the whole setup is mounted. This way, the
ensemble forms an ideal 2D system, without any pinning
of particles to the substrate. The particles themselves are
small enough to perform 2D Brownian motion but large
enough to be monitored with video microscopy. The field
of view of the video camera is 1160×865 µm2 in size and
contains about 9000 colloids, while the whole mono-layer
contains ∼ 300 000 particles. An external magnetic field
H perpendicular to the water-air interface induces a mag-
netic moment in each bead (parallel to the applied field)
leading to repulsive dipole-dipole interaction between all
particles. We use the dimensionless control parameter
Γ to characterize this interaction strength. Γ is given
by the ratio of dipolar magnetic energy versus thermal
energy

Γ =
µ0

4π

(χH)2(πρ)3/2

kBT
∝ T−1

sys (1)

and thus can be regarded as a dimensionless inverse
system temperature or a dimensionless in-plane pressure.
The state of the system in thermal equilibrium - liquid,
hexatic, or solid - is solely defined by the strength of the
magnetic field H since the laboratory temperature T ,
the 2D particle density ρ and the magnetic susceptibility
per bead χ are kept constant experimentally.

In these units the transition (crystalline - hexatic)
is at Γm = 70 ± 0.5 and the transition from hexatic
to isotropic at about Γi = 68 ± 0.5 [42]. Since the
system temperature is given by an outer field, enormous
cooling rates are accessible compared to atomic systems.
Based on a well-equilibrated liquid system at Γ ≈ 16,
deep in the fluid phase, we initiate a temperature jump
with cooling rates up to dΓ/dt ≈ 104 s−1 into the
crystalline region of the phase diagram Γm ≥ 70. This
temperature quench triggers the solidification within the
whole mono-layer. The time scale of cooling is 105 faster
compared to the fastest intrinsic scales, given e.g. by the
Brownian time τB = 50 sec, which is the time a particle
needs to diffuse the distance of it’s own diameter. In
atomic systems this time scale is much faster (Brownian
time in water is ∼ 10−11 sec) thus comparable quench
rates are rarely accessible.

Another enormous advantage of the two-dimensional
ensemble is, that there is no heat flux through the bulk
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and especially through the surface of the material as
it is usually the case in 3D condensed matter systems.
Especially at extreme cooling rates, this would easily
lead to temperature or pressure gradients causing an
inhomogeneous background during symmetry breaking.
This is ruled out in our experiment. To increase
statistics, each temperature quench is repeated at least
ten times to the same designated value of the control
parameter Γend with sufficient equilibration times in
between.

II. RESULTS

A. Orientational correlations

Ordering in 2D is best measured with the six-folded
bond order correlation function g6(r), since the closed-
packed crystal structure in 2D is always hexagonal, at
least for isotropic interaction:

g6(r) = ⟨|ψ(r⃗k)ψ∗(r⃗j)|⟩kj = ⟨|ψ(r⃗)ψ∗(⃗0)|⟩ , (2)

g6(r) is based on the local director field given by the
nearest neighbors. For a particle numbered with l it

reads ψl = 1/Nj

∑Nj

k=1 e
i6θkl . Here, Nj counts the

nearest neighbors which define the bond directions
θkl with respect to a fixed but arbitrary axis. Fig 1
shows the bond order correlation function g6(r) for one
time before and various times after the quench in a
lin-log plot. For all times it decays exponentially and
no signature of algebraic decay is detectable. Thus
the orientational order is always short range and no
quasi-long range order appears, ruling out signatures of
a hexatic phase, being prominent in 2D melting [37]. To
have a closer look we plot the positions of particles and
measure the local order: Fig 2 shows the mono-layer
two minutes after the quench from Γstart ≈ 16 to
Γend ≈ 166. The color code of particle l at position r⃗l
is given by the magnitude ml = m(r⃗l) = ψ∗

l ψl of the
local complex (six-folded) bond order field ψl. What is
observed are patches of sixfold order but with different
orientations of the director separated by disordered
regions. Drawing a close analogy of poly-crystallinity,
we introduce the term ’poly-hexallinty’ to describe such
systems. In equilibrium, the hexatic phase is defined by
an algebraic decay of the bond order correlation function
but only in the asymptotic limit of large distances. Out
of equilibrium, the Kibble-Zurek mechanism causes the
symmetry to be broken only locally thus the poly-hexatic
phase will always lead to a decay of the bond order
correlation function faster than algebraic. However,
locally symmetry broken domains are better described
by their orientational order compared to translational
order. Since the latter is in principle not broken in
two dimensions due to the Mermin-Wagner-Hohenberg
theorem [40, 43–45] (even in a mono-crystal without

FIG. 4. Snapshot of the monolayer with symmetry broken
domains (SBD), 64 s after a quench from Γ = 13 to a fi-
nal coupling strength of ΓE = 110. Small dots are fluid-like
particles, whereas big ones are crystal-like. Different colors
indicate individual grains which are labeled in time.

having poly-crystallinity) we proceed with bond order
correlations.

From the exponential decay g6(r, t) ∼ exp(−r/ξ6(t))
of the bond order correlation length (Fig. 1) one can
extract the orientational correlation length ξ6(t) as
function of time for different quench rates. As shown in
Figure 3 the correlation length always grows monoton-
ically after the quench. This is true for low quenches
(ΓF = 74), intermediate (ΓF = 80 and 110), and deep
quenches (ΓF = 166). In the early stage, we observe a
non-algebraic growth of the domain size (green curves)
followed by an algebraic one (red curves) for all quench
depth. Excluding the crossover region (as given in
the label) the non-algebraic time window is best fitted
with an exponential increase of bond order correlation
length. In principle ξ6(t) is a measure for the average
size of symmetry broken domains but comparing Fig. 2
where the domains extend about half a dozens particles
in diameter, the correlations length in Fig. 3 (lowest
plot) after 120 sec, where the ensemble is already in
the algebraic time window, is about three particle
distances. The residuum of the high symmetry phase
affects the averaged bond order significantly. Thus,
we introduce another criterion to measure the size of
locally symmetries broken domains that furthermore
allows us to follow and label individual domains in time:
simply taking a threshold for the magnitude of the local
bond order orientation is not sufficient and an elaborate
discussion how to define crystallinity in 2D on a local
scale can be found in [46].
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FIG. 5. The left image shows the number of symmetry-broken domains (SBD) and the average size of the domains (inset)
as a function of time for different quench depths. The error bars are averages about 10 independent quenches with about
9000 particles in the field of view. Whereas the average size of the nuclei grows monotonically as expected, the number of
symmetry-broken domains first increases to a maximum but then decreases in favor of fewer but larger domains. The red
arrows are a guide to the eye to identify the maxima. The right image shows the same data but plotted as the fraction of
symmetry-broken area which is implicitly a function of time. The curves almost superimpose as a function of crystallinity and
are independent of the quench depth.

B. Determining symmetry broken domains

We define a particle to be part of a symmetry-broken
domain if the following three conditions are fulfilled for
the particle itself and at least one nearest neighbor:

• The magnitude of the local bond order field m6k

must exceed 0.6 for both neighboring particles.

• The bond length deviation ∆|lkl| of neighboring
particles k and l is less than 10% of the average
particle distance la.

• The variation in bond orientation ∆Θ = |ψk − ψl|
of neighboring particles k and l must be less than
2.3◦ in real space (less than 14◦ in six-folded space).

Simply connected domains of particles that fulfill all
three criteria are merged into a local symmetry-broken
domain.
Figure 4 shows a snapshot of the ensemble with local
domains marked in different colors, while particles still
in a high-symmetry configuration are plotted as small
gray dots. From this data, one can analyze the number
and size of domains as a function of time.

C. Number and size of domains

Figure 5 [left] shows the average number of local do-
mains as a function of time up to 200 sec after the quench
and the inset shows the mean size. As expected, the
mean size of the nuclei grows monotonically as a func-
tion of time for all quench depths. The average number

of domains (Fig. 5 [left]) first increases but finally de-
creases in time. The maximum shifts to shorter times as
a function of quench depth - deeper supercooling drives
the system faster to the solid state. Note, that the grow-
ing of domains starts immediately after the quench such
that no lag time known from classical nucleation theory
(CNT) is detectable. Figure 5 [right] shows the same
data but plotted as a function of crystallinity X instead
of time. Here, we define crystallinity X as the fraction of
particles belonging to a symmetry-broken domain with
respect to all particles. Interestingly all curves almost
superimpose and show universal behaviour as a function
of crystallinity. Surprisingly, the position and height of
the average number of symmetry-broken domains (in the
context of nucleation this is called the mosaicity) is inde-
pendent of the quench depth. It appears when roughly
37% ∼ 1/e of particles belong to symmetry-broken do-
mains. Comparing the maximum on the real-time axis
(red arrows in Fig. 5 [left]) and the cross-over time in
Fig. 1 for different quench depth we propose the follow-
ing scenario: After a quench, local symmetry-broken do-
mains start to grow exponentially until about 37% of the
space is covered. In this time window, the ensemble is
dominated by critical-like fluctuations and most of the
domains disappear again. In our 2D system, the fraction
of 37% crystallinity marks a threshold where domains
with different orientations start to touch. From this on,
critical-like fluctuations are suppressed and the following
dynamics is dominated by the conversion of the yet un-
transformed regions of the high symmetry phase in the
region between symmetry broken domains. This period
is marked by an algebraic increase in the bond order cor-
relation length. For finite cooling rates, G. Biroli et al.
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have argued [47] that defect annihilation will alter the
classical Kibble-Zurek mechanism leading to two differ-
ent time regimes after the fall-out time, separating criti-
cal and classical coarse-graining. We argue that at very
early times and quenches from a rather hot true vacuum
(in terms of high energy physics), two also different time
regimes are detectable, but less affected by annihilation
of defects but critical-like fluctuations before and after
domains get in touch.

III. CONCLUSION

The paradigmatic melting theory in 2D, the Kosterlitz-
Thouless-Halperin-Nelson-Young-theory starts with a
highly idealized mono-crystal, free of dislocations, discli-
nations, vacancies, interstitials, or grain boundaries.
Recursion relations for elasticity, shielded by defects
can be solved by renormalization group theory until
shear elasticity disappears under heating, entering a
fluid phase. However, this mono-crystal can never be
obtained by cooling, at least in the thermodynamic limit.
The framework is given by Kibble and Zurek, arguing
with causality and critical slowing down, respectively.
Out of equilibrium and for any nonzero cooling rate, the
ensemble will become poly-crystalline with a domain
size given by the cooling rate. In the thermodynamic
limit, freezing and melting is not reversible, taking time
scales into account.

Here, we use a mono-layer of super-paramagnetic col-
loids which can be cooled free of gradients on unrivaled
fast time scales compared to any intrinsic dynamics
of the ensemble. We find universal behaviour of the
domain size and number of domains, independent of how
deep we quench into the crystalline phase. This shows
up most easily when the timescale is normalized by
the crystallinity, the area fraction of symmetry broken
domains. This is in stark contrast to ensembles with

underlying first-order transitions, where the mosaicity
depends on the degree of supercooling after the quench.
For continuous transitions, we propose that mosaicity
depends on the temperature before the quench and one
picks out the onset of criticality surprisingly far away
from the transition.

Taking the time-dependent bond order correlation
length we can identify two regimes: first an exponential
growth, followed by an algebraic one. Note, that the ex-
ponential growing is not yet observed so far and we keep
it open if is due to the Kosterlitz-Thouless universality of
2D ensembles. For the Lambda-transition of He4 Zurek
proposed an algebraic decrease of the inverse defect den-
sity after the quench [18]. For the XY-model a power-law
increase of the correlation length with a small logarithmic
correction is predicted [48] and in dusty plasma, an alge-
braic increase was found experimentally [49]. The end of
the crossover region between exponential to algebraic is
at about 37% ∼ 1/e transformed area (or crystallinity).
This coincides with the time when the number of domains
starts to decrease. Our microscopic picture is as follows:
In the exponential regime, symmetry-broken domains ap-
pear but are still strongly affected by critical-like fluctu-
ations: most of them disappear again. At about 37%
crystallinity, symmetry-broken domains start to touch
and critical-like fluctuations are damped. In the alge-
braic regime, fewer domains dissolve, larger ones more
dominantly grow and the total number of domains de-
creases.
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